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In this paper, a re"ned theory and approximate analytical solutions of laminated
composite beams with piezoelectric laminae are developed. The equations of motion of the
theory are developed using an energy principle. This formulation is based on linear
piezoelectricity and Mindlin lamination theory, and includes the coupling between
mechanical deformations and the charge equations of electrostatics. The approximate
analytical solutions, using software package MATLAB and MATHEMATICA, are to study
the e!ectiveness of piezoelectric sensors and actuators in actively controlling the transverse
response of smart laminated beams. A main feature of this work is that it introduces the
displacement potential function to simplify the governing equation. A new assumption of
harmonic vibration and the transformation method of complex numbers are introduced. It
can be used in di!erential equations that include both items of the functions sin and cosine,
and the odd-order di!erential coe$cient. The behaviour of the output voltage from the
sensor layer and the input voltage acting on the actuator layer is also studied. Graphical
results are presented to demonstrate the ability of a closed-loop system to actively control
the vibration of laminated beams. The present method has a general application in this "eld
of study.

( 2001 Academic Press
1. INTRODUCTION

Due to the increasing demands of high structural performance requirements, the study of
embedded or surface-mounted piezoelectric materials in structures has received
considerable attention in recent years. Smart structures technology featuring a network of
sensors and actuators, real-time control capabilities, computational capabilities and host
material will have a tremendous impact upon the design, development and manufacture of
the next generation of products in diverse industries. The idea of applying smart materials
to mechanical and structural systems has been studied by researchers in various disciplines.
Polyvinylidene #uoride (PVDF) was initially discovered by Kawai in 1969 [1]. Raw
polymetric PVDF (a-phase) is an electrical insulator and it does not have any intrinsic
piezoelectric properties. If the raw material is polarized during the manufacturing process,
PVDF transforms to b-phase*a tough and #exible semi-crystalline material and it can be
made to strain in either one or two directions in the "lm plane. Since b-phase PVDF possesses
a strong direct piezoelectric e!ect, it has been used in many transducer applications: e.g.,
sonar, medical ultrasonic equipment, robot tactile sensors, acoustic pick-ups, forces and
strains gauges, etc. Due to its distinct characteristics, such as #exibility, durability,
manufacturability, etc., PVDF is an ideal material for the distributed sensing and vibration
suppression/control of distributed parameter systems (e.g., beams, plates, shells, etc.).
0022-460X/01/280379#16 $35.00/0 ( 2001 Academic Press
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In order to utilize the strain-sensing and actuating properties of piezoelectric materials,
the interaction between the structure and SSA (strain sensing and actuating) material must
be well understood. There have been many theories and models proposed for analysis of
laminated composite beams and plates containing active and passive piezoelectric layers.
Bailey and Hubbard [2] designed a distributed-parameter actuator and control theory.
They used the angular velocity at the tip of cantilever isotropic beam with constant-gain
and constant-amplitude negative velocity algorithms and experimentally achieved
vibration control. Hanagud et al. ([3]) presented a procedure, combining theory and
experiments, to quantify the e!ects of an active feedback system on the damping matrix of
an isotropic beam. Mechanical models for studying the interaction of piezoelectric patches
surface-mounted to beams have been developed by Crawley and de Luis [4], Im and Atluri
[5], and Chandra and Chopra [6]. The study presented here is di!erent from these in that
laminated beams containing piezoelectric laminae are studied. The strain-sensing and
actuating (SSA) lamina can o!er both discrete e!ects similar to patches as well as
distributed e!ect. Gerhold and Rocha [7] used piezoelectric sensor/driver pairs that are
collocated equidistant from the neutral axis for the active vibration control of free}free
isotropic beams using constant-gain feedback control. They neglected the e!ect of
piezoelectric elements on the mass and sti!ness properties of the beam element. The
modelling aspects of laminated plates incorporating the piezoelectric property of materials
have been reported by Lee [8] and Crawley and Lazarus [9]. Wang and Rogers [10] used
the assumptions of classical lamination theory combined with inclusion of the e!ects of
spatially distributed, small-size induced strain actuators embedded at any location of the
laminate. Lee [8] also derived a theory for laminated piezoelectric plates, where the linear
piezoelectric constitutive equations were the only source of coupling between the electric
"eld and the mechanical displacement "eld. Pai et al. [11] presented a geometrically
non-linear plate theory for the analysis of composite plates with distributed piezoelectric
laminate. However, their model does not include the charge equations of electrostatics.
These models are based on classical laminated plate theory, which neglects the transverse
shear e!ects. However; the e!ects of transverse shear stresses are important in composite
"bre-reinforced materials because the interlaminar shear module is usually much smaller
than the in-plane Young's module. In contrast, Tzou and Gadre [12] derived equations of
motion for laminated shells with piezoelectric layers based upon Love's "rst-approximation
shell theory and Hamilton's principle. At that time, they did not include the charge
equations in the model. Later, Tzou and Zhong [13] derived governing equations for
piezoelectric shells using "rst order shear deformation theory and included the charge
equations of electrostatics. A "nite element model for the active vibration control of
laminated plate based on "rst order shear deformation theory has been presented by
Chandrashekhara and Agarwal [14]. An overview of recent developments in the area of
sensing and control of structures by piezoelectric materials has been reported in Rao and
Sunar [15]. Recently, the issue of the feedback control gain of smart composite structures
has also been discussed by Sun and Huang [16].

Compared with the analysis of laminated plates without piezoelectric layers, the work
reported in the area of "bre-reinforced composite beams with piezoelectric layers is still
quite limited, especially for active vibration control of composite beams with piezoelectric
laminae. Also, there are quite extensive studies carried out using the "nite element method.
The di!erent "nite element models for smart laminated composite beams have been well
established. However, for the analytical solution or exact solution, very few studies
concentrated on this research area. The present work is to develop a set of governing
equations for laminated composite beams with piezoelectric laminae using Hamilton's
principle by introducing the electric potential function. The approximate analytical
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solutions of smart laminated beams with piezoelectric laminae based on a "rst order shear
deformation theory (Mindlin plate theory [17]) is to be derived by using the special method.
The behaviour of output voltage from sensor and input voltage acting on actuator will be
also discussed. The major goal of this paper is to investigate the vibrational characteristic of
smart composite beams and an accurate solution for vibration control of smart beams is
presented. It can be used in di!erential equations that include both items of the functions sin
and cosine, and the odd-order di!erential coe$cient. The present method has a general
application in this "eld of study.

2. MATHEMATICAL FORMULATIONS

Constitutive equations are developed for laminated beams with piezoelectric sensor and
actuator layers. The shear deformation e!ect is incorporated in the formulation using
Mindlin plate theory. Consider a smart laminated beam having length ¸, width b, and
thickness h (Figure 1). The electric "eld is applied through the thickness of the piezoelectric
material. The constitutive equations including piezoelectric e!ects with respect to the plane
(laminate) co-ordinates is (x, y, z), are [18]
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where MDN, MEN, MeN and MpN are the electric displacement, electric "eld, strain and stress
vectors, and [QM ], [eN ], [gN ] are the elasticity, piezoelectric and permittivity constant matrices,
respectively. [eN ]T is de"ned as the transpose of [eN ]. Equation (1) describes the inverse
piezoelectric e!ect and equation (2) describes the direct piezoelectric e!ect.

It is to be noted that the present model of a beam derives from a plate. The assumption at
this point is that existing theories can be utilized. At this point in the development of
composite technology, simpli"cations of plate theory appear to o!er the most feasible
approaches from which to start. In the present case, the beam is a smart composite beam
Figure 1. Laminated beam with integrated piezoelectric sensor and actuator. h Non-piezoelectric layer;
, Piezoelectric layers.
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model including the piezoelectric materials, which possess anisotropic properties. PVDF
(polyvinylidene #uoride) and PZT (piezoceramics, such as lead zirconate titanates) are
excellent candidates for the role of sensors and actuators. In this project, the PVDF is
chosen as the material of both the sensors and actuators. Piezoelectric material layers are
polarized in the thickness direction and exhibit transversely isotropic properties in the
xy-plane. Considering piezoelectric materials while retaining the anisotropic behaviour of
the master structure, equation (1) can be written as [19]
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equations of smart composite beams from equation (3) [20].
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The displacement "eld for the present composite beams based on Mindlin plate theory can
be written as [21]
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where it is assumed that the displacement for y direction is neglected and u
0
, w

0
and t

0
are

only functions of x-axis and time (t) in the present model of beam. The strain displacement
relations of a laminated beam based on a "rst order shear deformation theory associated
with the displacement "eld are given by
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In the present beam model, it is assumed that the bottom and top layers are sensor and
actuator layers respectively. For sensor laminae, no external electric "eld is applied to this
layer. Then, the electric "eld intensity for sensor is zero. Substituting equation (7) into
equation (4), setting the sensor layer as Ek

z
"0 and integrating through the thickness, the

stress resultants can be obtained as
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According to Mitchell and Reddy [22], the electric potential variable U can be expressed
as

U(x, y, z, t )"f (z)/
0
(x, y, t). (10)

For the beam problem, the varying of y-axis is not considered because any physical
variables are uniformly distributed through the > direction. The electric "eld of smart
composite beams can be written as

U(x, z, t)"f (z)/
0
(x, t). (11)
Figure 2. Geometry of an n-layered laminated beam.
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Since the thickness of the piezoelectric layers is very thin, it is also assumed that the voltage
is uniformly distributed through the thickness (Z direction) of the piezoelectric layers. That
is f (z)"1. Then the electric "eld intensity Ek

z
can be expressed as

Ek
z
"/

o
(x, t)/h

p
(12)

where h
p

is the thickness of the piezoelectric layers.

3. GOVERNING EQUATIONS

Hamilton's principle can be expressed mathematically as
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applied surface electrical charge density. In this project, the body forces are not considered.
In equation (13), t
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Starting with the "rst integral, it is assumed that each layer of the present composite beam
model has the same vibration speed. The "rst variation kinetic energy can be expressed as
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The variation in strain energy is given by
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Piezoelectric materials are polarized in the thickness direction and exhibit transversely
isotropic properties in X>-plane. So for equation (2), only D

z
is of interest here. Considering

piezoelectric materials while retaining the anisotropic behaviour of the master structure, the
constitutive equation (2) can be written as
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For the beam problem, equation (16) can be written as
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The "rst variation of the electrical "eld potential energy ;
E

is obtained as
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The variation of the virtual work done by external surface force and the applied surface
charge density can be expressed as
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where p is the surface traction and q
0

is the surface charge density applied to the present
intelligent composite beam model respectively. Substituting equations (14), (15), (18) and
(19) into Hamilton's principle (equation (13)) the governing equations for vibration of smart
composite beams based on the MINDLIN plate theory can be expressed as
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According to the coe$cient Gk

z
and equations (17) and (20d), the electrical "eld potential

function can be expressed as

/
0
(x, t)"!

eJ
31

Gk
1

gJ
33

Gk
3

Lu
0

Lx
!

eJ
31

Gk
2

gJ
33

Gk
3

Lt
0

Lx
#/

A
(x, t), (21)



386 D. HUANG AND B. SUN
where /
A
(x, t ) is the input control electric potential voltage acting on the actuator layer. If

the sensing information is required, the electrical potential can be recovered by
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Note that /
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(x, t) is usually zero in the piezoelectric sensor layer. Thus, the piezoelectric

sensor electrical potential output is estimated by
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In the active vibration control application the electric force term can be regarded as the
feedback control force. The piezoelectric actuator electrical potential input in terms of the
output signal from the piezoelectric sensor layer can be written as
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where the negative velocity feedback control method is implemented and G
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Substituting equations (9), (21) and (24) into equations (20a}c) and using the derivative

operator forms, the governing equations can be written in a simple form in terms of the
mechanical and piezoelectric resultants as
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4. ANALYTICAL SOLUTIONS

Equations (25a) and (c) give
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Substituting equation (27) into equation (25b), the equation of the displacement potential
function F (x, t) is obtained as
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In this paper, it is assumed that the external exciting force has the feature of harmonic
vibration with the following form [20]:
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Substituting equations (29) and (30) into equation (28) and separating the two variables of
the "eld of space and time, the two coupled di!erentiation equations of functions K
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(x) and
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(x) are given as [20]
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The product of equation (31b) and imaginary unit i, and consequently the sum of the above
product and equation (31a), allowed the reduced equation to become [20]

A
6

d6K(x)

dx6
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K(x)"pN (x), (32)

where
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The solutions of equation (32) can be expressed as

K(x, t)"K
h
(x, t)#K

p
(x, t), (33)

where K
h
(x, t ) is the homogeneous solution and K

p
(x, t) is the particular solution.

Especially for uniformly distributed loads, p
1
(x) and p

2
(x) are constant, and consequently

pN (x) is also constant. Thus the particular solution of equation can be obtained as

K
p
(x)"pN /A

0
. (34)

By using Software Package MATLAB, the homogeneous solution of the present beam
model (32) can be written in the following form:

K
h
(x)"C

1
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2
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3
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4
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5
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6
ek6x, (35)

where C
1
}C

6
are the six constants of integration produced, which can be determined by

using the boundary conditions as shown before. Here
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and
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5. RESULTS AND DISCUSSIONS

An intelligent beam structure containing a distributed piezoelectric sensor/actuator on
both the top and bottom surface is shown in Figure 3. In this structure, the piezoelectric of
the bottom layer is considered as a sensor to sense the strain and generate the electrical
potential and the piezoelectric of the top layer as an actuator to control the vibration of the
structure. All material properties used are shown in Table 1.
TABLE 1

¹he material properties of the main structure and piezoelectric

Property PVDF Graphite/epoxy

E
1

0)2E#10 N/m2 0)98E#11 N/m2
E
2

0)2E#10 N/m2 0)79E#10 N/m2
G

12
0)775E#9N/m2 0)56E#10 N/m2

G
23

* 0)385E#10N/m2
v
12

0)29 0)28
o 1800kg/m3 1520kg/m3

e
31

0)046C/m2 *

e
32

0)046C/m2 *

e
33

0)0 *

g
11

0)1062E!9F/m *

g
22

0)1062E!9F/m *

g
33

0)1062E!9F/m *

t 0)1E!3m 0)125E!3m

Figure 3. A beam with piezoelectric sensor and actuator.
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A cantilever laminated beam with a distributed piezoelectric PVDF layer serving as
a distributed actuator on the top surface, and another PVDF on the bottom surface as
a distributed sensor, will be used as a case study. The beam dimensions considered are
length l"100 mm and width b"5 mm. The thickness of the beam can be generally written
as h"n]0)125E!3 m and piezoelectric PVDF layer is taken as 0)1]10~3 m (see
Table 1). The applied transverse load is uniformly distributed and has a magnitude of
p
1
(x)"p

2
(x)"2)5]103N/m2. Here, all the graphical outputs are obtained by using

Software Package MATHEMATICA. The transverse displacement of four-layer laminated
composite beams with an actuator and sensor layer on the top and bottom surfaces
respectively, for feedback gains of 0, 40, 100 and 140, are shown in the following "gures. In
the following graphical results, the frequency of the external applied force is taken as 10Hz.

Figure 4 shows the e!ect of negative velocity feedback control gain on the tip transient
response. The e!ect of ply orientation on the beam response is studied in Figure 5. It is
evident from the graphs that the transient tip amplitude of the beam is damped out quickly
when the higher feedback control gains are applied. This also illustrates the applicability of
the present approximate solution. From Figure 5, the signi"cant e!ect of the lamination
scheme or stacking sequences of laminated beams can be easily seen.

Figures 6 and 7 present the output and input voltage of vibration of smart laminated
beams. Please note that Figures 6 and 7 are based on the feedback control gain G

i
"40C/A

with [0/90/90/03] ply orientation. From these two "gures, it can be seen that the output and
input voltage vary as the beam vibrates, and their vibrational period is the same as the
period of laminated beams. It can also be seen that there is about a n/2 phasic di!erence
between input and output voltage. Figure 8 shows the tip de#ection of the beam versus
feedback control gain for the di!erent ply orientations. From this "gure, the tip de#ection
(amplitude) of the beam can be shown to decrease quickly while the feedback control gain
increases. When the control gain G

i
is less than 100 C/A, the control purpose is very
Figure 4. E!ect of negative velocity feedback gain on the tip transient response [0/90/90/03].



Figure 5. E!ect of ply orientation on the transient response.

Figure 6. The output voltage from sensor layer.
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e!ective. However, when the control gain G
i
'100 C/A, the tip de#ection decreases very

slowly. From all these phenomena, it can be said that the optimal feedback control gain of
the present beam model is about 100 C/A.

6. CONCLUSIONS

An analytical solution for the analysis of laminated composite beams with a piezoelectric
sensor and actuator has been presented in this paper. The governing equation of the smart



Figure 7. The input voltage on actuator layer.

Figure 8. The tip de#ection of beam versus feedback control gain.
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laminated composite beam based on the Mindlin plate theory has been derived by
introducing the electric potential function. The new assumption of the harmonic vibration,
which includes the sine and cosine terms, has been also presented. As another contribution,
the present method creatively introduced the transformation method of complex numbers
to reduce the two-coupled di!erential equations to one complex di!erential equation. From
numerical results of the dynamic response and analysis of the state governing equations for
smart laminated beams, it is observed that the displacement decays amplitude while the
feedback gain increases. It is concluded that the present method is correct and e!ective.
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